

Published on Web 11/09/2009

Double-Nucleus Enhanced Recoupling for Efficient ¹³C MAS NMR Correlation Spectroscopy of Perdeuterated Proteins

Ümit Akbey, Hartmut Oschkinat, and Barth-Jan van Rossum*

Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany

Received September 12, 2009; E-mail: brossum@fmp-berlin.de

Recent progress in solid-state magic-angle-spinning (MAS) NMR methodology has significantly contributed to the prospects for obtaining structural insight into "difficult", biologically relevant materials such as membrane proteins and protein fibrils.¹ In the quest for higher resolution, the use of perdeuterated proteins has been advocated, yielding spectra with liquid-state-like resolution in both the ¹H and ¹⁵N/¹³C dimensions.² This approach, combined with an optimization of the proton/deuterium ratio to maximize sensitivity,³ enables the use of scalar-coupling-based NMR experiments. As a beneficial side-effect of perdeuteration, low-power decoupling of ¹H and ²H is sufficient to obtain ¹³C line widths less than 0.5 ppm.

Experiments that transfer magnetization in a spin diffusion (SD)type process are important to provide constraints for the assignment and structure calculation of proteins.¹ SD is relatively insensitive to dipolar truncation effects and allows detection of weak couplings sufficient for full structure determination of proteins.⁴ Two commonly used SD-based experiments for obtaining ¹³C–¹³C correlations are proton-driven spin diffusion (PDSD)⁵ and radio-frequencyassisted diffusion (RAD,⁶ also known as DARR⁷). These mixing sequences are "proton-aided" and are strongly affected by the reduced proton density in the perdeuterated proteins.⁸ In particular, the reduced number of ¹H–¹H dipolar couplings makes efficient long-range magnetization exchange between heteronuclei difficult.

In this communication, we introduce a new strategy for improving the efficiency of ¹³C SD in perdeuterated proteins. This is achieved by exploiting both the proton and deuterium dipolar coupling networks. The method is called *double-nucleus enhanced recoupling* (DONER), and it provides significantly improved transfer efficiency for carbon SD at extremely low proton density. We have used a uniformly ²H/¹³C/¹⁵N-labeled α -spectrin SH3 domain sample to demonstrate the efficiency of the DONER sequence.

The efficiency of PDSD transfer is significantly reduced at high levels of deuteration.⁸ The effect of deuteration in this respect is similar to fast MAS, since both cases slow SD by reducing dipolar couplings. The RAD experiment is a modified version of the PDSD experiment in which proton irradiation is applied under the rotary resonance (RR) condition, $\omega_{1H} = n\omega_R$ (|n| = 1, 2), during ¹³C mixing period. Here ω_{1H} is the field strength of the proton irradiation and $\omega_{\rm R}$ is the spinning frequency. For protonated proteins, application of RAD significantly broadens the ¹³C line width because of the recoupling of ¹H-¹³C dipolar interactions, which enhances the efficiency of the SD process.^{6–8} The new pulse scheme presented in this work is an improved version of the RAD experiment for application to deuterated proteins. The schematic representation of the DONER pulse scheme is shown in Figure 1. Simultaneous proton and deuterium irradiation is applied under the RR conditions $(\omega_{1H} = \omega_{2H} = n\omega_R)$ during the ¹³C mixing period. The effect of irradiation at the deuterium Larmor frequency under the RR condition is very similar to that of ¹H irradiation in that it broadens

Figure 1. Schematic representation of the *do*uble-*n*ucleus *e*nhanced recoupling (DONER) pulse sequence. Solid bars indicate 90° pulses. ¹³C magnetization is created by cross-polarization (CP) from protons. Low-power ¹H and ²H WALTZ decoupling (2.5 kHz) was applied during the acquisition and evolution periods. During the ¹³C mixing period, ¹H and ²H irradiations are simultaneously applied under the rotary resonance condition ($\omega_{1H} = \omega_{2H} = n\omega_R$).

the ¹³C lines. Despite the fact that dipolar couplings of deuterons are much smaller than those of protons $(D_{1H-13C}/D_{2H-13C} \approx 6.5)$, the extensive amount of deuterium in the sample compensates for this effect, and sufficient recoupling is achieved. Interestingly, the line-broadening effect of irradiation at either the ¹H or ²H frequency alone or at both frequencies simultaneously qualitatively provides a very similar picture, and only minor differences were observed in one-dimensional (1D) ¹³C spectra recorded under different irradiation conditions (Supporting Figure 1 in the Supporting Information).

Figure 2A depicts a conventional two-dimensional (2D) PDSD ¹³C-¹³C correlation spectrum recorded with 50 ms mixing. Only very few cross-peaks are present, observed for the residues S19, S36, T32, and T37. The higher number of residual protons in these residues forms a larger homonuclear dipolar coupling network as a result of their exchangeable sites (NH and OH) close to their C_{α} and C_{β} carbons. The spectrum in Figure 2B was recorded with 50 ms RAD mixing and proton irradiation at 10 kHz. Clearly, more cross-peaks are observed in the spectrum, arising mostly from asparagines, aspartic acids, lysines, and arginines as well as from short-range C_{α} -CO and C_{α} -C_{β} transfer. Because of the larger proton content in various side-chain NH and OH sites, cross-peaks involving nearby spins gain intensity with the help of ¹H irradiation in the RAD experiment. However, most of the ¹³C signals from residues that are further away from the exchangeable sites are missing in the spectrum. Remarkably, the application of simultaneous ¹H and ²H irradiation during the ¹³C mixing period results in more intense cross-peaks from many additional ¹³C sites involving the intensively or fully deuterated ones (Figure 2C). In this spectrum, the $C_{\alpha}-C_{\beta}$, $C_{\alpha}-C_{\gamma}$, and $C_{\beta}-C_{\gamma}$ cross-peaks are more intense than in the previous two spectra. The integral of the signal that appears at \sim 55 ppm in the extracted slice, arising mainly from leucine and aspartic acid $C_{\alpha}-C_{\beta}$ cross-peaks, has been used to globally quantify the increase in efficiency. The cross-peak intensity in the DONER experiment is \sim 3 times stronger than in the RAD experiment and \sim 5 times stronger than in the PDSD experiment.

Figure 2. 2D 13 C $^{-13}$ C MAS NMR spectra (in ppm) recorded on uniformly 2 H/ 13 C/ 15 N-labeled α -spectrin SH3. Various 13 C homonuclear mixing schemes are compared: (A) PDSD, (B) RAD with 1 H irradiation during mixing, (C) DONER with both 1 H and 2 H irradiation during mixing, and (D) DONER with direct excitation. The spectra in (A–C) were recorded with initial 1 H– 13 C CP. The spectrum in (D) had a longer recycle delay of 5 s. A 50 ms mixing time was used for all four experiments. The experimental conditions were comparable for the four spectra: For 1 H and 13 C, 4.0 and 5.0 μ s 90° pulses, respectively, were used. Low-power proton and deuterium decoupling (WALTZ16) at 2.5 kHz were applied during both evolution and acquisition. CP was achieved with a contact time of 3 ms, $\omega_{1H}/2\pi = 53$ kHz, and $\omega_{13C}/2\pi = 33$ kHz (A–C). In the indirect dimensions, respectively. All of the experiments were performed on a Bruker Avance 2 spectrometer operating at a 1 H Larmor frequency of 400 MHz. The MAS frequency was set to 10 kHz, and the effective temperature was 275 °C for the four spectra. The positions of the 1D slices (top) are indicated with dashed lines in the 2D plots. The scaling of the 1D spectra and the contour levels in the 2D spectra are absolutely comparable.

Moreover, the intensities of the $C_{\alpha}-C_{\beta}$, $C_{\alpha}-C_{\gamma}$, and $C_{\beta}-C_{\gamma}$ crosspeaks are comparable to those observed in fully protonated SH3 recorded under similar conditions (Supporting Figure 2). Since the spectrum in Figure 2C was recorded with cross-polarization (CP), carbon sites further away from the exchangeable protons lacked initial magnetization, and hence, the ¹³C population was not uniform at the beginning of t_1 . Symmetric spectra can be obtained by either inserting a DONER period directly after CP or by using direct ¹³C excitation, as shown by the spectrum in Figure 2D. This spectrum is qualitatively highly similar to PDSD spectra recorded on fully protonated SH3 (Supporting Figure 2). In contrast, combining direct excitation with RAD mixing yields only very few cross-peaks (Supporting Figure 3). A more detailed study comparing site-specific buildup rates for the different types of cross-peaks is currently in preparation.

It has been demonstrated previously that ¹³C line widths less than 0.5 ppm can be achieved in an extensively deuterated protein by the simultaneous application of only low-power proton and deuterium scalar decoupling.9 We observed that at high levels of deuteration at the exchangeable sites, ²H scalar decoupling is more crucial than ¹H scalar decoupling (Supporting Figure 4). High-power dipolar decoupling is not needed in such deuterated systems, since the dipolar-coupled network formed by the proton spins collapses to a great extent as a result of deuteration, which strongly contributes to the low efficiency of ¹³C SD experiments on highly deuterated proteins. A very similar ¹³C line-broadening effect is observed irrespective of whether ¹H or ²H RR irradiation or both simultaneously are used (cf. Supporting Figure 1). Currently, the process underlying the improved transfer is not fully understood. With MAS, dipolar ²H-²H couplings are partly reintroduced.¹⁰ It might even be conceivable that a complex dipolar-coupled network among ¹³C, ¹H, and ²H spins plays a role in the improved ¹³C transfer. However, extensive calculations are needed to fully understand the observed effects.

The use of simultaneous deuterium and proton irradiation under the RR condition to assist ¹³C homonuclear SD increases spectral sensitivity and allows use of SD-like experiments on highly deuterated samples. This may provide a useful building block for ¹³C transfer in multidimensional experiments for assignment and structure-calculation purposes by using the same deuterated sample. The high resolution obtained for perdeuterated preparations in combination with the DONER approach to increase the sensitivity for correlations between heteronuclei will open up new experimental schemes in the research of perdeuterated proteins.

Acknowledgment. Kristina Rehbein and Anne Diehl are gratefully acknowledged for the preparation of the SH3 samples.

Supporting Information Available: Line-broadening effect of ¹H and ²H under RR irradiation, 2D ¹³C $^{-13}$ C spectra of protonated and deuterated SH3, comparison of direct-excitation RAD and DONER, and comparison of ¹H and ²H WALTZ decoupling. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Castellani, F.; van Rossum, B.-J.; Diehl, A.; Schubert, M.; Rehbein, K.; Oschkinat, H. *Nature* **2002**, *420*, 98. Jaroniec, C. P.; MacPhee, C. E.; Bajaj, V. S.; McMahon, M. T.; Dobson, C. M.; Griffin, R. G. *Proc. Natl. Acad. Sci. U.S.A.* **2004**, *101*, 711. Wasmer, C.; Lange, A.; Van Melckebeke, H.; Siemer, A. B.; Riek, R.; Meier, B. H. *Science* **2008**, *319*, 1523.
- (2) Chevelkov, V.; Rehbein, K.; Diehl, A.; Reif, B. Angew. Chem., Int. Ed. 2006, 45, 3878.
- (3) Akbey, U.; Lange, S.; Franks, W. T.; Linser, R.; Rehbein, K.; Diehl, A.; van Rossum, B.-J.; Reif, B.; Oschkinat, H. *J. Biomol. NMR* [Online early access]. DOI: 10.1007/s10858-009-9369-0. Published Online: Aug 22, 2009.
- (4) Grommek, A.; Meier, B. H.; Ernst, M. Chem. Phys. Lett. 2006, 427, 404. Manolikas, T.; Herrmann, T.; Meier, B. H. J. Am. Chem. Soc. 2008, 130, 3959.
- (5) Gan, Z. H.; Ernst, R. R. Chem. Phys. Lett. 1996, 253, 13.
- (6) Zilm, K. W. Presented at the 40th Experimental NMR Conference, Orlando, FL, 1999.
- (7) Takegoshi, K.; Nakamura, S.; Terao, T. *Chem. Phys. Lett.* 2001, *344*, 631.
 (8) Morcombe, C. R.; Gaponenko, V.; Byrd, R. A.; Zilm, K. W. *J. Am. Chem. Soc.* 2004, *126*, 7196–7197.
- (9) Agarwal, V.; Diehl, A.; Skrynnikov, N.; Reif, B. J. Am. Chem. Soc. 2006, 128, 12620.
- (10) Gan, Z.; Robyr, P. Mol. Phys. 1998, 95, 1143.
- JA907493P